Chapter 2

Interval arithmetic

In this chapter, we will briefly describe the fundamentals of interval arithmetic. We
will also discuss how to implement the arithmetic in a programming environment.

Simply put, interval arithmetic is an arithmetic for inequalities. To illustrate this
point, let us assume that we want to compute the area of a rectangle with side-
lengths ¢; and /5. Given the measurements ¢; = 10.3 + 0.1 and /5 = 4.4 + 0.2,
what can we say about the area A = /; - /57 If we express our measurements in
terms of the bounds |¢; — 10.3| < 0.1 and |¢5 — 4.4| < 0.2, then (using the triangle
inequality) all we can say is that £, - ¢, —10.3-4.4| < 0.2-10.3+0.1-4.440.1-0.2,
ie., |[A—4532| < 2.52. If, on the other hand, we view the measurements as the
inequalities 10.2 < ¢; < 10.4 and 4.2 < /5 < 4.6, the optimal answer is obvious: the
area must satisfy 42.84 = 10.2-4.2 < A < 10.4 - 4.6 = 47.84, which translates into
the slightly improved bound |A — 45.34| < 2.5.

b

ly

Figure 2.1: A rectangle with sides ¢; and /5.

The calculations in the latter case can be summarized as a single multiplication of
two intervals:

[10.2,10.4] x [4.2,4.6] = [42.84,47.84].

Interval arithmetic justifies this extension of the real arithmetic, and provides an
elegant means of computing with inequalities. For a concise reference on this topic,

31

32 © 2003 Warwick Tucker — June 3, 2004

see e.g. [Mo66], [Mo79], or [AH83]. Early references are [Yo31], [Dwb1], [Wa56],
[Sub8] and [Mo59).

2.1 Real intervals

In what follows, our basic elements will be closed and bounded intervals of the real
line. We will adopt the short-hand notation

la] = [a,a] = {z € R: a <z < a},

and consider the set of all such intervals of the real line:
IR = {[g,a]: a<a; aa€R}.

Note that we allow for degenerate intervals [a] with ¢ = a. We will refer to these
intervals as being thin. A natural embedding of IR in R? is given by the mapping
g: IR — R?, defined by [a,a] — (a,a). Geometrically, this corresponds to viewing
IR as the region in R? above and on the diagonal y = z. Points in R? lying on the
diagonal correspond to thin intervals.

(g,a)

F—
frm—

[a, @]

Figure 2.2: Identifying IR with {(z,y) € R?: y > z}.

Example 2.1.1 The elements [—3,4], [1,1], and [r,7] all belong to IR, whereas
[2, —1] and [—o0, 0] do not.

Being sets, the elements of IR inherit the natural set relations, such as =, C, C, and
C, defined by

[a] =[] & a=banda=b
[a]C] & b<aanda<b
[a] c[b] < [a] C[b] and [a] # [b]
[a]&[b] & b<aanda<b

©) 2003 Warwick Tucker — June 3, 2004 33

We can partially order! the set IR in several ways. Emphasizing the set-valued
properties of IR, we can use C as a partial ordering. Preserving the the natural
ordering of the real numbers, we may extend the relation < to mean

<[] & a<b

This also provides a partial ordering of IR.

By somewhat abusing our interval notation, we often identify a real number a with
the corresponding thin interval [a, a]. It then makes sense to define the relation

a€f] <& b<aanda<b,

which is really a special case of [a] C [b]. All of these relations can be complemented
by their logical opposites #, €, ¢, ¢, and &.

We can also equip IR with analogues to the set operations U and N. Both operations,
however, require minor adjustments. First, taking the union of two intervals may
not result in a new interval. To overcome this problem, we introduce the notion of
forming the hull of two intervals:

[a] U [b] = [min{a, b}, max{a, b}].

It is clear that the resulting interval contains the union of [a] and [b]. Second, the
intersection of two intervals [a] and [b] is empty if either @ < b or b < a. Because of
this, we must add the empty set (denoted by [#]) to IR for the intersection operator
to be well-defined. When the intervals [a] and [b] have at least one point in common,
the intersection is the standard one. Thus we have

0] cifa<borb< a,
la] N (B = {[max{g, b}, min{a, b}] : otherwise.
Example 2.1.2 Let [a] = [1,3], [b] = [1,7], [c] = [-2.3,4], and [d] = [4,5]. Then

[a] C [d], la] C 8], [a]U[8] = [1,], [a]u[d] = [1,5], [e]n[d] = [0], and []N[d] = [4,4].

Given an interval [a] € IR, we define the following real-valued functions

rad([a]) =
mid([a]) =

(@ — a) (the radius of [a]),
(@+ a) (the midpoint of [a]).

N [—= N—=

Thus we can write [a] = [mid([a]) — rad([a]), mid([a]) + rad([a])], and it follows that

felz] & |&—mid([z])] < rad([z]),

LA relation ~ is a partial order on a set S if, for all a,b,c € S, it satisfies: (1) Reflexivity:
a ~ a. (2) Antisymmetry: a ~ b and b ~ a implies a = b. (3) Transitivity: a ~ b and b ~ ¢ implies
a~ c.

34 © 2003 Warwick Tucker — June 3, 2004

for any interval [z]. Two additional real-valued functions which often come in handy
are

mig([a]) = min{|a|: a € [a]} (the mignitude of [a]),

mag([a]) = max{|a|: a € [a]} (the magnitude of [a]).
These functions provide us with the smallest resp. largest distance to the origin

attained by elements of [a]. There are explicit, computable formulas for these func-
tions:

mig({al) = {0 L if 0 € [a],

mag(|a|) = max4|a|, all.
min{|al,|a|} : otherwise; 8([al) {ldl,lal}

Combining the two functions, we can form the absolute value of an interval:

abs([a]) = {la|: a € [a]} = [mig([a]), mag([a])].

In contrast to the previously defined functions, the absolute value of an interval is
an interval.

Example 2.1.3 Let [z] = [-2,3] and [y] = [1, 7]. Then mag([z]) = 3, mig([z]) =0,
mag([y]) = 7, mig([y]) = 1, abs([z]) = [0,3], and abs([y]) = [1,7].

Finally, we can turn IR into a metric space? by equipping it with the Hausdorff
distance:

d([a], [b]) = max{|a— b|, |a — b]}. (2.1)
Note that, according to our definitions, it follows that d([a], [0]) = 0 if and only if
[a] = [b]. Using the metric, we can define the notion of a convergent sequence of

intervals:

lim ;] =[a] & lim d([a], [a]) = 0

k—00

& (limgk:g)/\(lim&k:&>/\(Vk gkgék).

k—00 k—00

Note that the last condition is necessary for the < direction.

2.2 Real interval arithmetic

In addition to viewing the elements of IR as sets, we may consider them as generalized
real numbers. As such, it makes sense to attempt to define arithmetic on IR. We
have already seen that a copy of R is represented in IR as the set of thin intervals. It
is therefore desirable to demand that the extended arithmetic should coincide with
the normal real arithmetic for thin intervals. The most natural approach is to define
binary arithmetic operations on elements of IR in a set theoretic manner:

2See Definition A.3.2 for the definition of a metric space.

©) 2003 Warwick Tucker — June 3, 2004 35

Definition 2.2.1 If x is one of the operators +, —, X, <+, we define arithmetic on
the elements of IR by

[a] x [b] ={axb: a € [a],b € [b]},
with the exception that [a] + [b] is undefined if 0 € [b].

From this definition it is not immediately clear that the resulting set always is an
interval. As we are working exclusively with closed intervals, however, it turns out
that we can describe the resulting set in terms of the endpoints of the operands:

Proposition 2.2.2 Arithmetic on the elements of IR is given by

[a] + [b] = [a+ b, @ + D]

[a] — [b] = [a —b,a — b]

[a] % [b] = [min{ab, ab, ab, ab}, max{ab, ab, ab, ab}]
[a] + [b] = [a] x [1/b,1/8], if O ¢ [0].

Proof: The reason why the resulting set is an interval is due to the fact that any
real operation 4, —, X, =+ is continuous in both of its arguments, with the exception
of dividing by zero (this is why [a] = [b] is undefined® if 0 € [b]). If we fix one
of the arguments, the real operations are monotone in the remaining argument.
The monotonicity implies that extremal values are attained on the boundary of the
domains, i.e., at the endpoints of the intervals. The proposition can thus be verified
by examining a finite number of cases. O

As a consequence of Proposition 2.2.2, it follows that IR is an arithmetically closed
subset of P(R) — the power set* of the real numbers.

From a computer programming point of view, this is good news indeed: using the
formulas from Proposition 2.2.2; it is straight-forward to implement the datatype
interval with its associated arithmetic, see Section 2.4. From a practical perspec-
tive, the formulas for multiplication and division can be made more efficient. As
it stands, a single interval multiplication requires four real multiplications (as well
as several comparisons). This number can be reduced by checking the sign of each
endpoint of the two intervals. It is easy to see that interval multiplication can be
divided into nine cases, as illustrated in Figure 2.3. Only one case requires four real
multiplications; the other cases require just two.

As an example, assume that 0 < ¢ < @ and b < 0 < b. This situation corresponds
to the square on the second row, third column in Figure 2.3. It is clear that the
maximal element of [a] x [b] = {ax b: a € [a],b € [b]} is given by choosing the largest

3We can allow for division by zero by extending the underlying set of real numbers to include
the concept of infinity. We will address this topic in Section 2.3.
4The power set P(S) of a set S is the set of all subsets of S.

36 © 2003 Warwick Tucker — June 3, 2004

elements from both [a] and [b]. By the same token, the minimal element of [a] X [b]
is given by choosing the largest element from [a] and the smallest element from [b].
The resulting interval is thus given by [a] x [b] = [ab, ab], which only requires two
real multiplications. In a similar fashion, the formula for interval division can be
reduced to six simpler cases.

[0}
o o possible maximum
e possible minimum
Q)
& [a]
€
C,

Figure 2.3: A more efficient interval multiplication scheme.

Example 2.2.3 Using Proposition 2.2.2, we can compute

[—1,0] + [0, 7] = [-1,] [1,—1] x [2,5] = [-5, —2]
[1,4] = [1,4] = [-3,3] [-2,3] x [-2,3] =[-6,9]

31— 0,51 =1[5:1] [1,V2] x [-1,1] = [-V2,V?2]
[2,4] — [3,3] = [-1,1] [1,2] = [-2,-1] = [-2,—1].

It follows from Definition 2.2.1 (or from Proposition 2.2.2) that addition and multi-
plication are both associative and commutative: for [a], [0], [c] € IR, we have

[a] + ([0] + [¢]) = ([a] + [o]) + [c; [a] + [0] = [b] + [a],
[a] x ([b] x [e]) = (la] x [B]) x [c|; [a] x [b] = [b] x [a].

Also, it is clear that the elements [0,0] and [1,1] are the unique neutral elements
with respect to addition and multiplication, respectively. Note, however, that in
general an element in IR has no additive or multiplicative inverse. For example,
we have [1,2] — [1,2] = [-1,1] # [0,0], and [1,2] = [1,2] = [%,2] # [1,1]. As a
consequence, the distributive law does not always hold. As an example®, we have

[—1L1]([=1,0] + [3,4]) = [-1,1][2,4] = [-4, 4],

5Here, and in what follows, we will often suppress the multiplication symbol x.

©) 2003 Warwick Tucker — June 3, 2004 37

whereas
[—1,1][-1,0] + [-1,1][3,4] = [-1,1] + [-4,4] = [-5, 5]

This unusual property is important to keep in mind when representing functions as
part of an interval calculation. Interval arithmetic satisfies a weaker rule than the
distributive law, which we shall refer to as sub-distributivity:

[a]([] + [e]) < [al[b] + [al[c]. (2.2)

This is a set theoretical property that illustrates one of the fundamental differences
between real- and interval arithmetic.

Exercise 2.2.4 Prove that the space IR can be partially ordered by either relation
C or <, as described in Section 2.1.

Exercise 2.2.5 Prove that [a]([b] + [c]) = [a][b] + [a][c] when either

(1) [a] is thin.

(2) all elements of [b] and [c| have the same sign.

Exercise 2.2.6 Given an interval [a] show that

(1) 0 € [a] — [a], but that in general [a] — [a] # [0, 0],

(2) 1€ [a] = [a], but that in general [a] + [a] # [1,1]. (Assume O ¢ [a].)
Another key feature of interval arithmetic is that of inclusion isotonicity:
Theorem 2.2.7 If [a] C [d'], [b] C [b'], and x € {+, —, x, =}, then

[a] % [b] € [a] % 0],
where we demand that 0 ¢ [V] for division.

This is the single most important property of interval arithmetic: it allows us to
accurately estimate the range of a large class of functions. This will be explained in
a later section. Note that, in particular, Theorem 2.2.7 holds when [a] and [b] are
thin intervals, i.e., real numbers.

Proof: It is somewhat amazing that this powerful theorem has a classical “one-line”
proof: by an immediate application of Definition 2.2.1, we have

[a] x [b] = {axb: a €[a],be [b]} C{axb:ac[d],be [t} = [d][b]

38 © 2003 Warwick Tucker — June 3, 2004
2.3 Extended interval arithmetic

According to Definition 2.2.1, we cannot divide by an interval containing zero. Nev-
ertheless, if we attempt to reinterpret the spirit of the formula

[a] =[] = {a+b: a € [a],b € [b]},
[a] + [b] = {c € R: bc = a, a € [a],b € [b]}, (2.3)

there might be a way around this slight imperfection. The procedure, however,
is quite delicate, and implementing it on a computer raises some subtle questions
regarding how we choose to extend the real numbers to include the concept of infinity.
Before going into details, let us illustrate the use of (2.3) in a simple setting.

Example 2.3.1 Ifa = [1,2] and b = |5, 3], then according to (2.3), the quotient
[c] = [a] =+ [b] is given by

[c] ={ceR: bc=q, a €]l,2],b€[-5,3]}.
Focusing on the particular value b = 0, we want to find all ¢ such that 0-c € [1,2].

As the equation clearly has no solution, we loose no information by discarding this
case. Hence

[(]={ceR:bc=uaq, a€l,2],be[-50)U(0,3]}
={ceR:bc=a, a€[l,2,be[-5,00}U{ceR: bc=a, a€[L,2],be (0,3]}
= ([1,2] = [-5,0)) U ([1,2] + (0,3)).
The first set may be interpreted as the limit
[c]"=lim{ceR: bc=a, a €[1,2],b € [-5,¢)}

e—0—
— 15 . I 2 1y 1
- El_lgl,[L 2] - [_576) - Eg%{(; _3) - (_007 _5]'

Similarly, the second set may be interpreted as the limait
]t = lim{ceR: bc=a, a€ll,2],be (s3]}
e—0t

— 1 - — 1 12y 1
= lim [1,2] + (¢,3] = lim [3,2) = [}, 0).
Combining the two results, we have the answer
[15 2] - [_55 3] = (—OO, _%] U [%a OO) = R\ (_%7 %)

This example indicates that we need a notion of infinity in order to perform the
extended interval division. There are several ways we can allow for “division by
zero” — it all boils down to how we choose to extend the real numbers. From a
mathematical point of view, there are more or less elegant extensions. We will
acquaint ourselves with three variants, which are appropriately named: the good,
the bad, and the ugly. Naturally, we shall stick to the ugly.

©) 2003 Warwick Tucker — June 3, 2004 39

2.3.1 The good: projective extension

The projective extension of the real numbers, usually denoted R*, is formed by
adding the unsigned “point at infinity” oo to the real line. This one-point compact-
ification of the real line allows us to identify R* with the closed circle S! where the
north-pole N plays the role of infinity, see Figure 2.4.

Figure 2.4: Identifying R* and S! via the projection 7: R* — S,

We can partially extend the arithmetic operations from R to R* in the following
manner:

—(00) = o0, x+o00=00+1z=o00ifx # oo,
z-o0o=o00-x=o00if z #0, x/oc =0if x # oo,
z/0 =00 if z # 0.

The expressions 0o £ 00, co/oco and 0 - co, however, are undefined.

In this setting there is no need for the interpretation (2.3). Instead, repeating the
division performed in Example 2.3.1, we immediately have

[1,2] +[-5,3] =[1,2] + ([5,0)U{0} U (0,3])
= ([1,2] =+ [-5,0)) U ([1,2] + 0) U ([1,2] = (0,3])

—{:CER :cg —s}U{oc}U{z € R: 5 <z}

Note that we no longer can write (—co, —¢) for {x € R: # < —1}. This is because,
in the projective extension, we have —oo = oo, i.e., there is only one infinity, and it
cannot be compared to the finite real numbers with any of the relations {<, <, >, >}.
As a consequence, we cannot assign the value zero to an expression like e~ since
in R* the equality e = €*° must hold. On the other hand, it makes perfect sense
to write tan(7/2) = co. The beautiful part of the projective extension is the way we
can represent the result of a “division by zero”. So far, the outcome of performing
[1,2] = [-5, 3] appears to be a rather messy expression. Nevertheless, using the
topology of the circle, we may adopt a short-hand notation for extended intervals:

[%,—%]:{xGR:x<——}U{oo}U{x€R %Sx}

40 © 2003 Warwick Tucker — June 3, 2004

N
—10

Figure 2.5: The two intervals [—3, 2] and [5, —10] in R*.

To motivate this notation, we refer to Figure 2.5, which shows two intervals in R*.
The interval containing zero is simply the set {x € R*: — 3 < z and z < 2}, which
we denote [—3, 2] as usual. The second interval, however, is different. It represents
the set {z € R*: x < —10 or 5 < x or = 0o}, which we can write as [5, —10]. This
should be interpreted on the circle as moving from the left endpoint, 5, counter-
clockwise to the right endpoint, —10, just as with normal intervals. Unfortunately,
there is no suitable way to represent the extended real line R* in this manner.

Motivated by the preceeding discussion, we define the set IR"* of projectively extended
intervals:
IR = {[g,a]: aacR},

where the case a > a is interpreted as an extended interval.

2.3.2 The bad: affine extension

The affine extension of the real numbers, usually denoted R, is formed by adding the
two signed infinities, —oo and +o00, to the real line. This two-point compactification
of the real line allows us to write R as the closed interval [—oc, +0c]. The arithmetic
operations can be partially extended to R in the following manner:

—(+00) = —oc and — (—o0) = +oq, z + (+00) = +oo if x # —o0,
T+ (—o0) = —o0 if z # 400, z - (+oo) = oo if z > 0,
x - (+o00) = Foo if z < 0, x/(+o0) =0 if z # +oc.

The expressions +o0c + (—o0), —oco + (+00), and /0, however, are undefined. In
contrast to the projective extension, the affine infinities can be compared in size:
—00 <z < 400 if £ # +00 and —oo < +o0. Furthermore, the affine extension has
the appealing property that it makes perfect sense to write statements like e~ = 0,
et® = 400, In0 = —o0, and In(+00) = 4o0o. This property makes the affine
extension the preferred choice among analysists.

It is now straight-forward to define the set IR of affinely extended intervals:

IR={[g,a]: a< @ aacR}.

©) 2003 Warwick Tucker — June 3, 2004 41

Thus, apart from the elements of IR, also intervals on the form [—oo, 7], [z, +0oc],
and [—o0, +00| are valid elements of IR.

Since we cannot divide by zero in R, repeating the division performed in Exam-
ple 2.3.1 requires the interpretation (2.3), and produces

[1,2] =[5, 3] = [—o0, _%] U [%,OO]

As with the projective extension, we could simply introduce the notion of extended
intervals (thus removing the demand g < a for intervals), now with the meaning
JU L, 00, (2.4)
Alternatively, we could accept the fact that some interval operations may produce a
union of intervals. This line of action, however, leads to some tricky implementation
issues. A yet simpler way of resolving the whole issue would be to return the entire
line [—o0, +00] when dividing by zero, possibly with the exception that [a]/[0] = [0]
if 0 ¢ [a]. As this approach leads to an unneccessary loss of information, it is
therefore not very widespead. We will use the definition

IR = {[a,a]: a,a € R}

where the case ¢ > a corresponds to an extended interval of type (2.4).

2.3.3 The ugly: signed zero

While all elements of R* have unique reciprocals, this is not the case for all members
of R. Indeed, in R we have 1/(—oc0) = 1/(+00) = 0, whereas 1/0 is undefined. In
an attempt to resolve this problem, it is possible to equip R with signed zeroes,
satisfying z/(40) = sign(z) - (+00) and z/(—0) = sign(z) - (—o0) for z # +0. In
effect, this gives both infinites and both signed zeroes unique reciprocals, just like
all other elements of R:

1/(+00) = 40, 1/(+0) = 400, 1/(—o0) = -0, 1/(—0) = —o0.

As an illustration, we have 1+ [+0,2] = [}, +-00], whereas 1 + [0, 2] = [—o0, +o<].
Unfortunately, there is no natural way of propagating the sign of the zero under
addition and subtraction: what sign should (+0) + (—0) or even z — x have?

The IEEE standard incorporates signed infinities as well as signed zeroes. The signs
appear naturally within the actual sign-exponent-mantissa encoding of the floating
point numbers. Even though —0 and +0 are distinct values, they both compare as
equal, and are only distinguishable by comparing their sign bits. Regarding addition
and subtraction, the standard [IE85] states

42 © 2003 Warwick Tucker — June 3, 2004

When the sum of two operands with opposite signs (or the difference of
two operands with equal signs) is exactly zero, the sign of that sum (or
difference) shall be + in all rounding modes except round toward —oo,
in which mode that sign shall be —. However, x + x = — (—z) retains
the same sign as x even when x is zero.

Thus, on any computer compliant with the IEEE standard, we have (40) + (—0) =
x —x = +0, unless we are rounding with 7, answering the question posed above.

The signed zeroes were not introduced for their mathematical elegance: their pres-
ence is due to computer manufacturers’ desire to reduce the number of fatal floating
point errors. Instead of having to abort a computation that happens to perform a
division by zero, it is much more desirable to produce a well-defined result of the
division. Without the signed zero, this is simply not possible.

2.3.4 The extended interval division

In light of the previous discussion, the extended interval division is defined over the
space IR (equipped with signed zeros), where we allow for extended intervals of the
form (2.4). Following [Ra96|, we define division over IR as follows

(

a] % [1/5.1/8]) 0 ¢ [B],
[—00, +00] if 0 € [a] and 0 € [b],
[@/b, +00] ifa<0and b<b=0,
[a/b,a/b] ifa<0and b<0<b,
[a] = [b] = { [—o0,a/b] ifa<0and 0=0b<b, (2.5)
[—00, a/b] if0<agand b<b=0,
[a/b, a/b] if0<agand b<0<b,
[a/b, +<] if0<aand 0=0b<b,
| [0] if 0 ¢ [a] and [b] = [0, 0].

Case 1 deals with non-zero divisors, although it now incorporates quotients such as
[6,8]+[2, +00] = [+0,4]. Cases 4 and 7 yield extended intervals, i.e., these particular
results actually consist of a union of two infinite intervals. In [Ra96], it is proved
that the division defined by (2.5) is inclusion isotonic, i.e., if [a] C [d], and [b] C [¥'],
then [a] = [b] C [a@/] = [I'], which generalizes Theorem 2.2.7.

It is worth pointing out that, although signed zeros are not explicitly present in
(2.5), their properities are mimicked in the formulas. As an example, let us consider
case 5, where the condition is stated as “if @ < 0 and 0 = b < b”. For all practical
purposes, this can be interpreted as “if @ < 0 and +0 = b < b".

There are two main advantages of having access to an extended interval division
in a computing environment. First, all run-time errors of the type division by zero

©) 2003 Warwick Tucker — June 3, 2004 43

are immediately avoided. Usually, an error of this type will cause a program to
crash, unless some serious error-handling capabilities have been provided by the
programmer. Second, it is actually desirable, from a mathematical point of view,
to be able to perform extended division. Later on, we will see a striking example of
this when we study the interval Newton method.

2.4 Floating point interval arithmetic

When implementing interval arithmetic on a computer, we no longer work over the
space R, but rather I - the floating point numbers of the computer. This is a finite
set, and so is [IF — the set of all intervals whose endpoints belong to F:

IF={[g,a]: a<a; a,acTF}.

As discussed earlier, F is not arithmetically closed. Thus, when performing arith-
metic on intervals in F we must round the resulting interval outwards to guarantee
inclusion of the true result. By this, we mean that the lower bound is rounded down,
and the upper bound is rounded up. For [a], [b] € TF, we define

[a] + [b] = [V(a+ b), A(@+D)]

[a] = [b] = [V(a—), A(@— b)]

[a] x [b] = [min{v/(ab), V(ab), v (ab), v (ab)},

max{A(ab), A(ab), A(ab), Aab)}

[a] = [b] = [min{sy(a/b), v (a/b), V(@
(

5 706/, 76/0)
max{A(a/b), A(a/b), A(a/b), /\(

a/b)}], if 0 ¢ [b].

Recall that 7(z) and A(x) were defined in Section 1.3.2. The resulting type of
arithmetic is called interval arithmetic with directed rounding. As we shall see, this
is easily implemented on a computer that supports the directed roundings.

With regards to efficiency, a single IF-multiplication requires eight F-multiplications:
four products must be computed under two different rounding modes. As before, it
is customary to break the formula for multiplication into nine cases (depending of
the signs of the operands’ endpoints). Out of these nine cases, only one will involve
four F-multiplications; the remaining eight will need just two. In a similar manner,
the (non-extended) IF-division can be split into six cases.

Exercise 2.4.1 Derive the optimal formulas for division in IF, assuming that a
floating point comparison is much faster than a floating point division.

Extending the floating point interval arithmetic via (2.5) is straight-forward, and
yields the set - -
IF = {[g,a]: a,a € F},

where the case a > a corresponds to an extended interval of type (2.4).

44 © 2003 Warwick Tucker — June 3, 2004

2.4.1 A MATLAB implementation of interval arithmetic

To illustrate how easy it is to get started, we present a simple MATLAB implementa-
tion of (non-extended) interval arithmetic with directed rounding. A corresponding
implementation in the C++ programming language is listed in Appendix B.

As most modern programming languages, MATLAB uses classes to define new data
types, and methods to define the functionality of a user-defined class. A new class
can be added to the MATLAB environment by specifying a structure that provides
data storage for the object, and creating a class directory containing m-files® that
operate on the object. These m-files contain the methods for the class. MATLAB is
somewhat peculiar in that it demands a certain file hierarchy associated with each
class. In Figure 2.6 we illustrate a simple setup for our interval class. We will
explain the purpose of the different m-files as we go along.

——e interval.m
——e display.m
——eplus.m
——eminus.m
——emtimes.m
@interval/ ——]—emrdivide.m
——euplus.m

I euminus.m

e setround.m

L private/ ——

e cast.m

Figure 2.6: The hierarchy of the MATLAB interval class.

As we want to build an interval class, we begin by creating a directory called
@interval where all m-files associated to the interval class will reside. Having
done this, we create the m-file interval.m, in which we define what is meant by an
interval. It is natural to implement an interval as a class consisting of two numbers
— the endpoints of the interval:

01 function iv = interval(lo, hi)

02 % A naive interval class constructor.

03 if nargin == 1

04 hi = lo;

05 elseif (hi < lo)

06 error (’The endpoints do not define an interval.’);
07 end

6An m-file is simply a text file filename.m containing a sequence of MATLAB statements to be
executed. The file extension of .m makes this a MATLAB m-file.

©) 2003 Warwick Tucker — June 3, 2004 45

08 iv.lo = lo; iv.hi = hi;
09 iv = class(iv,’interval’);

By including lines 03 and 04, we allow the constuctor to automatically convert a
single number x to a thin interval [z, z]. Note that, as opposed to most programming
languages, MATLAB only supports the double format, which means that no explicit
type declarations have to (or can!) be made.

We must also inform MATLAB how to display interval objects. This is achieved via
the m-file display.m:

01 function display(iv)

02 J, A simple output formatter for the interval class.
03 disp([inputname(1), ’ = ’]1);

04 fprintf(’ [%17.17f, %17.17f]1\n’, iv.lo, iv.hi);

We can now input/output intervals within the MATLAB environment:

>> a = interval(3, 4), b = interval(2, 5), c = interval(1l)
0 ?3.00000000000000000, 4.00000000000000000]
° ?2.00000000000000000, 5.00000000000000000]
" ?1.00000000000000000, 1.00000000000000000]

When creating user-defined classes, it is often desirable to change the behavior of
the MATLAB operators and functions’ for cases when the arguments are user-defined
classes. This can be accomplished by overloading the relevant functions. Overload-
ing enables a function to handle different types and numbers of input arguments,
and perform whatever operation is appropriate for the situation at hand.

Each native MATLAB operator has an associated function name (e.g., the 4+ operator
has an associated plus.m function). Any such operator can be overloaded by cre-
ating an m-file with the appropriate name in the class directory. In Table 2.4.1, we
list the operators we intend to overload in our interval class.

Here, another feature of MATLAB becomes evident: the MATLAB-engine regards all
numeric elements as matrices, even if they are single numbers. Indeed, a single
number can be viewed as a 1 X 1-matrix.

Let us begin by writing a function that returns the sum of two intervals:

01 function result = plus(a, b)

02 ’, Overloading the ’+’ operator for intervals.
03 [a, b] = cast(a, b);

04 setround(-inf);

05 1lo = a.lo + b.lo;

"In what follows, we will not distinguish between functions and methods.

46 © 2003 Warwick Tucker — June 3, 2004

‘ Operation ‘ m-file ‘ New description

a+hb plus(a,b) Interval addition
a-b minus (a,b) Interval subtraction
ax*xb mtimes (a,b) | Interval multiplication
a

/ b rmdiv(a,b) Interval division
+a uplus(a) Unary plus
-a uminus (a) Unary minus

Table 2.1: Overloaded MATLAB arithmetic methods.

06 setround(+inf);

07 hi = a.hi + b.hi;

08 setround(0.5);

09 result = interval(lo, hi);

Let us examine this small piece of code: First, the function cast, appearing on line
03, makes sure that the inputs a and b are intervals. If one of them is not an interval,
it is converted to an interval by a call the interval constructor, see the listing below.

01 function [a, b] = cast(a, b)
02 % Casts non-intervals to intervals.
03 if “isa(a, ’interval?)

04 a = interval(a);
05 end

06 if “isa(b, ’interval’)
o7 b = interval(b);
08 end

Casting® allows for expressions like [1, 2] + 3, which is converted to [1, 2] +[3, 3], and
evaluated to [4, 5].

Second, the function setround, appearing on lines 04, 06, and 08 of the file plus.m,
instructs the MATLAB-engine to switch the rounding direction before performing an
arithmetic operation. This function is implemented in the auxiliary file setround.m,
presented below:

01 function setround(rnd)

02 % A switch for changing rounding mode. The arguments

03 % {+inf, -inf, 0.5, 0} correspond to the roundings

04 % {upward, downward, to nearest, to zero}, respectively.
05 system_dependent(’setround’,rnd);

We consider both functions cast and setround to be intrinsic to the interval class.
By placing their m-files in the private subdirectory, these functions are hidden from
non-interval classes.

8In the programming language C++, casting is implicitly performed at the compilation stage.
This simplifies the actual programming, but can also produce hard-to-find bugs.

©) 2003 Warwick Tucker — June 3, 2004 47

Carrying on, it is straight-forward to write functions that overload the remaining
arithmetic operations —, x, and +. Below, we present a MATLAB listing of the
division algorithm:

01 function result = mrdivide(a, b)

02 /, A non-optimal interval division algorithm.
03 [a, b] = cast(a, b);

04 if ((b.1lo <= 0.0) & (0.0 <= b.hi))

05 error (’Denominator straddles zero.’);
06 else

07 setround (-inf) ;

08 tmpl = min(a.lo / b.lo, a.lo / b.hi);
09 tmp2 = min(a.hi / b.lo, a.hi / b.hi);
10 lo = min(tmpl, tmp2);

11 setround (+inf) ;

12 tmpl = max(a.lo / b.lo, a.lo / b.hi);
13 tmp2 = max(a.hi / b.lo, a.hi / b.hi);
14 hi = max(tmpl, tmp2);

15 setround(0.5);

16 result = interval(lo, hi);

17 end

Performing some simple interval calculations, we have:

>> a+b, a-b, a*xb, a/b
ans =

[5.00000000000000000, 9.00000000000000000]
ans =

[-2.00000000000000000, 2.00000000000000000]
ans =

[6.00000000000000000, 20.00000000000000000]
ans =

[0.59999999999999998, 2.00000000000000000]

The outward rounding is apparent in the left endpoint of the last result. All other
endpoints were computed exactly. We should point out that our interval constructor
is still very rudimentary, and does not handle user-input adequately. As an example,
suppose we would like to generate the smallest interval containing 1/10. As a first
attempt, we may try something like

>> interval(1/10)
ans =
[0.10000000000000001, 0.10000000000000001]

which is not what we wanted. The problem here is that the quotient 1/10 is first
rounded to a single floating point number, which is then converted to a thin interval.
Since 1/10 has no exact representation in the floating point format, we obtain an
interval that does not contain 1/10. A way to work around this is to declare either the
nominator or denominator as an interval. Since integers have exact representations,
no rounding takes place at this stage. It is only when the division takes place that
the directed rounding kicks in, producing a non-thin interval straddling 1/10:

48 © 2003 Warwick Tucker — June 3, 2004

>> interval(1)/10
ans =

[0.09999999999999999, 0.10000000000000001]

More sophisticated interval libraries provide a means for entering strings of num-
bers?, such as

>> interval(’1/10?)
ans =
[0.09999999999999999, 0.10000000000000001]

Nevertheless, this has a cost in programming effort which we are not willing to pay
at the moment.

Continuing our calculations, we can now illustrate the sub-distributive property of
interval arithmetic:

>> ¢ = interval(0.25, 0.50)
c =

[0.25000000000000000, 0.50000000000000000]
>> ax(b+c), axb+axc
ans =

[5.25000000000000000, 22.00000000000000000]
ans =

[5.00000000000000000, 22.00000000000000000]

Notice the differing lower endpoints; clearly the expression ab+ ac produces a wider
result than a(b + ¢). Since all computations in this example are exact, the outward
rounding does not affect the result.

Exercise 2.4.2 Modify the appropriate m-files so they perform multiplication and
division by checking the signs of the operands’ endpoints.

Exercise 2.4.3 Add some interval functions (e.g. sin(x) and pow(x,n)) to the
interval class. Note that this requires some knowledge of how accurate the corre-
sponding real-valued functions are in the underlying programming environment.

Exercise 2.4.4 Do you know any other programming language that supports oper-
ator overloading? If so, try to implement a rudimentary interval arithmetic library
whose syntax permits expressions like x + y and z = sin(pow(x,2)), where x, y,
and z are of type interval.

Now that we have all arithmetic operations in place, let us consider the built-in
relational operators provided by MATLAB. Some of these are listed in Table 2.4.1.

9The MATLAB package IntLab has this functionality, as does the C++ toolbox CXSC, see [INv4]
and [CXSC], respectively.

©) 2003 Warwick Tucker — June 3, 2004 49

‘ Operation ‘ m-file ‘ New description ‘

a == eq(a,b) | Equal to

a "= b |ne(a,b) | Notequalto
a<=b |le(a,b) Subset of
a<hb 1t(a,b) | Proper subset of
a&b and(a,b) | Intersection
alb or(a,b) | Interval hull

Table 2.2: Overloaded MATLAB set-relation methods.

When overloading these methods, we will give them new, interval-based, meanings.
Let us begin with the simplest of them all: the equality relation. Two intervals are
equal exactly when their endpoints agree. Analogously, two intervals are not equal
if at least one of their endpoints differ. Both functions can be implemented in a few
lines.

01 function result = eq(a, b)

02 /%, The ’(e)qual’ operator ’==’.

03 [a, b] = cast(a, b);

04 result = ((a.lo == b.1lo) & (a.hi == b.hi));

01 function result = ne(a, b)

02 /% The ’(n)ot (e)qual’ operator ’~=’.

03 [a, b] = cast(a, b);

04 result = ((a.lo "= b.lo) | (a.hi "= b.hi));

Turning to the order-relations less or equal and less than, we will interpret them as
the set-relations inclusion C and proper inclusionC, respectively.

01 function result = le(a, b)

02 /% The ’(1l)ess or (e)qual’ operator ’<=’. Means ’a inside b’.
03 [a, b] = cast(a, b);

04 result = ((b.lo <= a.lo) & (a.hi <= b.hi));

01 function result = 1lt(a, b)

02 /% The ’(1)ess (t)han’ operator ’<’. Means ’a inside int(b)’,
03 [a, b] = cast(a, b);

04 result = ((b.lo < a.lo) & (a.hi < b.hi));

The four functions we have defined so far are all boolean, i.e., their return-values come
from the set {true,false}. In MATLAB (and most other programming languages),
these alternatives are coded as '1’ and ’0’, respectively.

>> a = interval(1l, 10); b = interval(-2, 3); c = interval(3, 5);
>> [a==b, a==c, a~=b, a~=c, a<=b, b<=a, a<c, c<al
ans =

0 0 1 1 0 0 0 1

50 © 2003 Warwick Tucker — June 3, 2004

Finally, we will implement the logical operatiors and and or, but we will re-define
them as the set-operations intersection N, and hull LI, respectively. One compli-
cation here is that two intervals may have an empty intersection. Seeing that our
simple interval constructor does not accommodate empty intervals, we will return
the MATLAB version of the empty set, accompanied by a Warning16 whenever this
situation occurs.

01 function result = and(a, b)

02 % The ’and’ operator ’&’. Means ’a intersected with b’.
03 [a, b] = cast(a, b);

04 if ((a.hi < b.1lo) | (b.hi < a.lo))

05 warning (’The intervals do not intersect.’);

06 result = [];

07 else

08 result = interval(max(a.lo, b.lo), min(a.hi, b.hi));
09 end

Since we have not defined the interval methods to operate on empty sets, it is vital
that we have a means for detecting an empty set. Fortunately, MATLAB has a built-in
function isempty that can reveal whether the outcome of an interval-intersection is
an empty set or not.

>> a=interval(1,3); b=interval(4,5); c=interval(2,5);
>> aANDb = a & b; aANDc = a & c;
Warning: The intervals do not intersect.
> In /matlab/Q@interval/and.m at line 5
aANDb =
1
aANDc =
[2.00000000000000000, 3.00000000000000000]
>> [isempty(aANDb), isempty(aANDc)]
ans =
1 0

The hull of two intervals is always well-defined, and thus straight-forward to imple-
ment.

01 function result = or(a, b)

02 % The ’or’ operator ’|’. Means ’hull of a and b’.

03 [a, b] = cast(a, b);

04 result = interval(min(a.lo, b.lo), max(a.hi, b.hi));

>> a0Rb = a | b, a0Rc = a | ¢
a0Rb =

[1.00000000000000000, 5.00000000000000000]
a0ORc =

[1.00000000000000000, 5.00000000000000000]

10Tt may be desirable to comment out the warning in order to minimize unnecessary output.

©) 2003 Warwick Tucker — June 3, 2004 51

Exercise 2.4.5 Make the necessary modifications to the m-files interval.m and
display.m to accommodate input/output of empty intervals. As a first step you
must find a good representation for the empty interval.

Exercise 2.4.6 How would you modify the remaining m-files to fully incorporate
empty intervals?

Exercise 2.4.7 Implement a new class xinterval for extended intervals. Try to
extend all associated interval methods described in this section. [Warning: this takes
some effort!]

Exercise 2.4.8 An interval can also be represented by the two numbers < m,r >,
where m is the midpoint, and r is the radius of the interval. Derive the interval-
arithmetic rules using only these two quantities. From a numerical point of view,
what are the merits/drawbacks of this (midrad) representation compared to the end-
point (infsup) representation?

